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Abstract 

Let I = (br, , b,)R (g 2 2) be an ideal in a Noetherian ring R, let K be the kernel of the 
natural homomorphism from R, = R[Xl,. . ,X,] onto S = R[tZ] (the restricted Rees ring of R with 
respect to I), and let J = ({biX, - bjXi; 1 < i < j 5 g})R,. Then the main results in this paper 
strengthen two known results in the literature by showing: if br , . , b, is a regular sequence, then 
K = J and, for all n 2 1, Ass(R,/J”) = Ass(R,/K); and, if bl, . . . , b, is an asymptotic sequence, 
then K, = .I, and, for all n > 1, Ass (R,/(Y),) = Ass(R,/K,) = {P; P is a minimal prime divisor 
of K}, where L, denotes the integral closure of the ideal L. @ 1997 Elsevier Science B.V. 

AMS Classijication: Primary: 13A15, 13B20; secondary: 13B99, 13C99 

1. Introduction 

With the notation of the abstract, Micali showed in [7, Lemma 2, p. 421 that if 

h,..., b, is a regular sequence, then K = J, and that the converse holds if R is an 

integral domain. Also, Rees showed in [12, (2.1)] that if height((bl,. . . , b,)R) = g 2 2 

and R is a quasi-unmixed local ring, then K,=J, and Ass(R,/(J”),)=Ass(RS/Ka) for all 

n > 1. Now it is shown in [6, Lemma 5.31 that an ideal of the principal class (that is, 

an ideal of height g that can be generated by g elements) in a quasi-unmixed local ring 

is generated by an asymptotic sequence, so with this in mind, both results are concerned 

with Ker(R, 4 R[tI]) when I is generated by a sequence (a regular sequence, for 
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Micali’s theorem; an asymptotic sequence, for Rees’ theorem). Therefore each of these 

results suggests a sharpened version of the other. Namely, Rees’ result suggests that 

the conclusion for Micali’s theorem should be K = J and Ass(R,/J" ) = Ass(R,/K) for 

all n > 1. And Micali’s result suggests that the conclusion for Rees’ theorem should 

be valid when b 1,. . . , b, is an asymptotic sequence in an arbitrary Noetherian ring and 

that (some form of) a converse should be true. The main theorems in this paper show 

that both such sharpened versions hold. 

In Section 2 we mention some of the nice structure of (RS)p and the nice behavior of 

Jp and Kp, where P E Ass(R,/J” ) (for some n 2 1) and I $ Pn R, and then we prove 

three results which are used to shorten the proofs of Theorem 3.2 and Theorem 4.3. 

In Section 3 the emphasis is on strengthening the conclusion of Micali’s theorem, 

and it is shown in Theorem 3.2 that if bl, . . . , b, is a regular sequence, then K = J and 

Ass(R,/J”) = Ass(R,/K) for all n > 1. Then a corollary shows that if R is Cohen- 

Macaulay (resp., an integral domain, a Cohen-Macaulay integral domain and I is a 

normal ideal), then the form ring of R, with respect to J is Cohen-Macaulay (resp., 

an integral domain, an integrally closed Cohen-Macaulay integral domain), and if R 

is either Cohen-Macaulay or an integrally closed integral domain, then the restricted 

Rees ring of R, with respect to J has the same property. 

Finally, in Section 4, Rees’ theorem is strengthened in Theorem 4.3 by showing 

that if I is generated by an asymptotic sequence in an arbitrary Noetherian ring, then 

J, = Ka = Rad(K) and Ass(Rg/(J”),) = Ass(R,/K,) = {P;P is a minimal prime 

divisor of K} for all n 2 1. Finally, a converse of this result is also proved. 

2. Preliminaries on Ker(R, -+ R[tZ]) 

In this brief section we introduce the notation that will be used in the remainder of 

this paper, and then mention some of the nice structure of (RS)p and the nice behavior 

of Jp and Kp, where P E Ass(R,/K”) U Ass(R,/J”) for some n 2 1 and I $ P n R. 

Since most of these results are known to experts, proofs will generally be omitted. 

We begin by specifying the notation. 

2.1. Notation. The following notation is fixed for the remainder of this paper: bl, . . . , b, 

(g > 2) are elements in a Noetherian ring R, and K = Ker(R, -+ S), where R, = 

RIXl,. .,X,1 and S = R[tb,, . . . , tb,] is the restricted Rees ring of R with respect to 

I = (bl,..., b,)R. (Here we assume that K is the kernel of the natural homomorphism c1 

from R, onto S, so a is the R -homomorphism such that a(Xi) = tbi for i = 1,. . . , 9.) 
Also, ~i,j = biXj - bjXi for 1 5 i < j 5 g, J = ({Wi,j; 1 5 i < j 5 g})R,, and 

Hi = ({wi,j, wj,k; 1 < i < j,j < k 2 g})R, for j = 1,. . . , g. Finally, ~1,. . . ,zh are the 

prime divisors of zero in R, ordered so that ~1,. . ,zd (1 5 d < h) are the minimal 

prime divisors of zero, and if bj is not nilpotent, then Aj = (Rg)b,. 

The following remark summarizes several well-known and/or easily proved facts 

concerning K, J and the rings Aj = (Rg)b,. 
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2.2. Remark. With Notation 2.1, the following hold: 

(2.2.1) If bj is not nilpotent, then HjAj = JAj = KAj is generated by the regular 

sequence x1 - (Cl/Cj)xj,...,xj-1 -tcj-l/cjWj,xj+l - (Cj+l/CjWj3...,& - (Cg/Cj)xj, 

where ci is the image of bi in Aj. 

(2.2.2) K has exactly h prime divisors, say PI,. . . ,Ph, and they may be subscripted 

so that P 1,. . . ,Pd are its minimal prime divisors and Pj fl R = Zj for j = 1,. . . ,h. 

(2.2.3) If P E Ass(R,/K”) UAss(R,/J”) for some n 2 1 and if I g z = P n R, say 

bj 4 z, then z E Ass(R) and for all m 2. 1 it holds that P E Ass(R,/Km)~Ass(R,/Jm) n 

Ass(Ry/H,?“). 

(2.2.4) If PI,. . ., Pd are as in (2.2.2) and if I $C PI U. . . UPd, then {PI,. ..,Pd} C 

Ass(R,/J) and, with Tj = (RS)p, for j = 1,. .., d, it holds that Tj/zjTj is a regular 

local ring of altitude g- 1 and (J”),Tj = (K”),Tj = (Pj”),Tj = (Pj”Tj)a = (Pjn,Zj)Tj 

for all n > 1. (Here, G, denotes the integral closure of an ideal G.) 

In Remark 2.3 we prove three results that will help shorten the proofs of the main 

results in Sections 3 and 4. 

2.3. Remark. 

(2.3.1) Let A = {P; P E Ass (R,/J”) for some n 2 1) and assume that Z $ P for 

all P E A. Then, for all n 2 1, J” = K” and Ass(R,/K”) = Ass(R,/J”) = Ass(R,/K) = 

A = {PI,. . . ,Ph}, where the Pi (i = 1,. . . ,h) are as in (2.2.2). 

(2.3.2) Let B = {P; P E Ass(R,/(J”),) f or some n > 1) and assume that Z $ P for 

all P E B. Then, for all n > 1, (J”)a = (K”), and Ass(R,/(K”),) = Ass(R,/(J”),) = 

Ass(R,/K,) = B = {PI ,..., Pd}, where the Pi (i = 1,. ..,d) are as in (2.2.2). (Note: 

By (4.1.1), B =2*(J) is the set of asymptotic prime divisors of J.) 

(2.3.3) If B is as in (2.3.2) and if Z $ P for all P E B, then K, = J, = Rad(K). 

Proof. For (2.3.1), fix n > 1 and note that if Z $ U{P; P E Ass(R,/J”)}, then 

(2.2.3) shows that each P in Ass(R,/J”) is in Ass(R,/K*) for all m 2 1. Therefore, 

Ass(R,/J”) G Ass(R,/K”), so K”(R,)p = J”(R,)p for all P E Ass(R,/J”) (by (2.2.1), 

since (RS)p = (Aj)pA, for some j = 1,. . ., g), so it follows that K” c J”. Therefore 

K” = J”, since the opposite inclusion is clear, hence it follows that if Z $ P for all 

P E A, then for all n 2 1 it holds that K” = J” and A = Ass(R,/J”) = Ass(R,/K*). 

In particular, A = Ass(R,/J) = Ass(R,/K), and Ass(R,/K) = {PI,. . . ,Ph} by (2.2.2). 

For (2.3.2) it is shown in [ll, (2.4)] that if P E Ass(R,/(J”),) for some n > 1, 

then P E Ass(R,/(Jm),) for all m 2 n, so [6, Proposition 3.171 shows that P E 

Ass(R,/Jm) for all large m. Therefore, if Z $ P, then Km(R,)p = Jm(R,)p for all m 

> 1 (by (2.2.1), since (RS)p = (Aj)PA, for some j = 1,. ..,g), hence (Km(Rg)p), = 

(Jm(RS)p), for all m 2 1. It follows from this that if, for some n 2 1, Z g U{P; 

P E AW%/(J”M), then WY, C (~{(K”&)P),; P E Ass(R,/(J”),)}) n R, = 

(n{(J”(R,)p),; P E Ass(R,/(J”),)}) fl R, = (J”)a. Therefore (K”), = (J”)=, since 

the opposite inclusion is clear, so it follows that if Z $ P for all P E B, then (K”), 

= (J”>= for all n L 1, hence Ass(R,/(K”),) = Ass(R,/(J”),) for all n > 1. Also, it 
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follows from (2.2.2) that each Pi (i = 1 , . . . , d) is a minimal prime divisor of K, so 

each is in As.s(R,/(K”),) for all IZ 2 1, so it follows that {P,, . . . , Pd} g Ass(R,/(K”),) 

= A.s.s(R,/(J”),) C B. Therefore, to complete the proof it must be shown that B c 
{Pl,...,Pd). 

For this, let P E B and assume that I $ P. Then [ 11, (2.4)] shows that P E 

Ass(R,/(J”),) for all large n, so [6, Proposition 3.181 shows that there exists a minimal 

prime ideal z in R, such that z C P and P/z E Ass((R~/z)/(((J/z)“)~)) for all large 

n, hence P/z E Ass((Rs/z)/((J/z)“)) for all large n, by [6, Proposition 3.171. Also, z 

= (z n R)R, and z n R is a minimal prime ideal, and it is readily checked that J/z = 

({C$ - b&i 1 5 i < j F g})(R/z&, where the “bar” denotes residue class modulo 

z. Further, 7 $ P/z (since I $Z P, by hypothesis), so it follows from (2.2.3) that 

P/z E Ass((R,/z)/Q), where Q = Ker((R/z& 
-- 

--+ (R[tZ])), and Q is prime, since R[tZ] 

is an integral domain, hence Q = P/z. Therefore (P/z) n (R/(z n R)) = (0), since 

Q n (R/(z n R)) = (0), so it follows that: (*) P n R = z n R is a minimal prime ideal. 

Also, P E Ass(R,/(J”),) for all large 12, as noted above, so [6, Proposition 3.171 shows 

that P E Ass(R,/J”) for all large n, and I $!i P, by hypothesis, so P E Ass(R,jK), by 

(2.2.3). Therefore, since P n R = z n R is a minimal prime ideal (by (*)), it follows 

from (2.2.2) that P E {PI,. . . , Pd}. Therefore, it follows that if I $ P for all P E B, 
then B C {Pl,...,Pd}. 

Finally, for (2.3.3), if I g P for all P E B, then (2.3.2) shows that J, = K, and that 

Ass(R,/K,) = {Pi> . . . , Pd}. It then follows from (2.2.4) that K, = n{(Ka(Rg)p,)n R,; 

j = l,..., d} = n{(P,(R,)p,)nR,; j = l,...,d} = Rad(K). 0 

3. Regular sequences and Ker(R, + Z?[fZ]) 

Let b 1,. . . , b, be a regular sequence in a Noetherian ring R. Then a fairly self- 

contained proof of the fact that K = J is given in [7, Lemma 2, p. 421, but we do not 

know how to use it to show that then Ass(R,/J”) = Ass(R,/K) for all n 2 1. So in 

this section we give in Theorem 3.2 a new proof (using generically perfect ideals (see 

(3.1.2))) that K = J, and this approach yields the additional conclusion concerning the 

prime divisors of J”. Then this section is closed by proving a useful corollary. 

To prove Theorem 3.2 we need the following definitions. 

3.1. Definition. 

(3.1.1) Let R be a Noetherian ring and let J be a proper ideal of R. Then J is said 

to be perfect in case grade(J) = proj.dim.R(R/J). 

(3.1.2) Let S be a polynomial ring over Z, the integers, and let J be a homogeneous 

perfect ideal in S. Then J is generically perfect in case S/J is faithfully flat over Z 

(equivalently, since J is homogeneous, torsion-free over Z). 

References for generically perfect ideals include [l-4]. By the main result of [2], 

if J is a generically perfect homogeneous ideal and one replaces the variables in S 
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by a regular sequence contained in the Jacobson radical of a Noetherian ring, then the 

resulting ideal is also perfect. 

3.2. Theorem. Let I = (bl ,..., b,)R, R,, K, and J be as in Notation 2.1 and assume 

that bl,..., b, form a regular sequence. Then: 

(3.2.1) J = K. 

(3.2.2) Ass(R,/J”) = Ass(R,/K) for all n > 1. 

Proof. By (2.3.1) it suffices to show that I $& P n R for all P E A = {P; P E 

Ass(R,/J”) for some n > 1). For this, note that if P E A, then there exists p E 

Ass(Rg[tJ]/JRs[tJ]) such that pnR, = P. (For if R = R,[t-‘,tJ] is the Rees ring of R, 

with respect to J, then t-“R n R, = J”, so there exists a prime divisor q of t-“R such 

that q n R, = P. Then q is a prime divisor of t-‘R, and R/t-‘R = R,[tJ]/JR,[tJ] = 

F(R,, J) (the form ring of R, with respect to J), so p = q n R,[ti] is a prime divisor 

of JR,[ti] such that p n R, = P.) Therefore, if we can show that I $ p for all p E 

Ass(R,[tJ]/JR,[tJ]))), then we will be done. 

For this, let K,j (1 5 i < j 5 g) be (3 indeterminates and map Re[{Wi,j}] onto 

F(R,,J) by sending Wi,j to the J -form wlj of wi,j. Call this map 4, SO 4 is the map 

presenting F(R,,J). We are going to prove that I 9 p for all p E Ass(Re[tJ]/JRe[tJ]) 

by using the fact that the kernel of 4 is a generically perfect ideal in the case where 

b,, . . . , b, are indeterminates. 

To elaborate, let Bi,. . . ,Bg, XI,. . . , X,, and { Wi,j} be indeterminates over Z, the 

integers, and set w:,~ = BiXj - BjXi, for 1 5 i < j 5 g. Set R’ = Z[Bl, . . . , Be], 

R; = R’[X1,..., X,], and J’ = ({Wlj}) . R~, and let Q’ C Rh[{ Wi,j}] be the kernel of the 

map presenting the form ring F(R& 1’) of R$ with respect to J’. Then [l, Theorems 

9.14 and 9.171 show that F(Ri, J’) is an integrally closed Cohen-Macaulay integral 

domain. It therefore follows that Q’ is a perfect prime ideal of grade (i) (see [I, 

Proposition 16.191). Thus, Ri[{ Wi,j}]/Q’ is Z torsion-free, so Q’ is generically perfect. 

Let Q denote the image of Q’ in Re[{ Wij}] obtained by setting Bi = bi, for i = 1,. . . , g. 

We now show that Q is a perfect ideal of grade (t). 

TO see that Q is perfect, we may check by localizing R,[{ Wi,j}] at any homogeneous 

maximal ideal _& containing Q. In other words, if we show that 

for every homogeneous maximal ideal ,Ri/, then we obtain that Q is perfect with 

grade(Q) = ($). For this, .,& = @&Xl,. . .,X,, { Wi,j})Re[{ Wi,j}] for some maximal 

ideal M in R. If I $Z A, then the proof of the first claim below shows that QA is gen- 

erated by a regular sequence of length (3. Th ere f ore, we may assume that I CM. Then 

Q& is obtained from a generically perfect ideal (namely, Q’) by replacing the vari- 

ables B1, . . . , B,,Xl, . . . , Xg, { Wi,j} by the regular sequence bl, . . .) be,Xl,. . . ,Xg, { Wi,j} 

contained in the Jacobson radical of R,[{Wi,j}] A, and therefore, QA is a perfect ideal 

of grade (1) by the Hochster-Eagon theorem mentioned following (3.1.2). 
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We now make two claims. The first claim is that Qb, = (Ker(4))b,, and the second 

claim is that no prime divisor of Q contains bi. If both claims hold, then (since it 

is clear that Q C Ker(4)) it follows that Q = Ker(4) and that no prime divisor of 

Ker(cp) contains I, so no prime divisor of zero in F(R,, J) contains I, hence I $ p 

for all p E Ass(R,[tJ]/JR,[tJ]), which is what we want to prove. 

For the first claim, note that blWj,k = bjWl,k - bkWl,j (1 < j < k 2 g), SO it 

follows that the (“I’) elements FVj,k - (bj/bl)Wl,k + (bk/bl)Wl,j (1 < j < k 5 g) 

are in (&Y(f$))b,. Also, Jb, c (Ker(4))b,, and (2.2.1) shows that &, = Jb, = (Hi)b, 

is generated by the wi,i (1 < i 5 g) (which generate a regular sequence of length g- 1 

in R,[l/bl]). Therefore, the form ring of R,[l/bl] with respect to Kb, = Jb, = (H,)b, is a 

polynomial ring in g - 1 variables over Rg[l/bl]/Kbi = R,[l/bl]/H~R,[l/bl]. It 

follows at once that the elements Wj,k-(bj/bl)Wl,k+(bk/bl)W,,j (1 < j < k 5 g), and 

~1,~ (1 < i < g) geIIerate (Ker(4))b,. Since these elements clearly belong to Qb,, 

and since Qb, s(Ker(6))bl, we must have Qb, = (&?r(4))b,. Therefore the first claim 

holds. 

It now remains to see that no prime divisor of Q contains bl. For this, suppose, on 

the contrary, that bl E p for some prime divisor p of Q. Now grade(p) = ($, since 

Q is perfect. In fact, [ 1, Proposition 16.171 shows that 

(3.2.3) grude(pp) = (i). 

We will now obtain a contradiction by showing that, since bl E p, grude(pp) 2 ($ + 1. 

For this, since J C Q and bl E p, it follows that either: (a) I C p; or, (b) I $ p 

and Xi E p. If (a) holds, then p contains the regular sequence bl, . . , b, of length 

g. Therefore at least one Wi,j, say WI,~, is not in p. Now p contains the g - 2 

elements xkwi,2 - XzWl,k + &W&k (3 < k < g), and the (“T”) Plucker IdatiOnS 

Wl,zWj,k - Wl,jWz,k + Wl,kWz,j (3 < j < k < g). If We lOCdiZC at p, then wi,2 

becomes a unit, so these elements taken together yield a regular sequence of length 

g + (g - 2) + (“y2) = (i) + 1 contained in pp, and this contradicts (3.2.3) so (a) 

does not hold. (Of course, we also obtain a similar contradiction assuming any other 

wi,j 6 P.) 
If (b) holds, then without loss of generality we may assume that b2 $! p. Then p 

contains bl,Xl and the g - 2 elements w2j (3 5 j 2 g). Additionally, p contains the 

(“i’) elements b2 Wj,k - bjW2,k + bk W2,j (3 < j < k 5 g) and the g - 2 elements 

bl W2,j - bZWl,j + bjWl,z (3 5 j 5 g). If we localize at p, then b2 becomes a unit, SO 

these elements taken together yield a regular sequence of length ($ + 1 contained in pp, 

and this contradicts (3.2.3), so (b) does not hold. Therefore, we have a contradiction 

to the supposition that bl E p, since neither (a) nor (b) holds, so this contradiction 

completes the proof of the second claim, hence the theorem holds. 0 

Corollary 3.3. is a corollary of Theorem 3.2 (and its proof). It shows that R,[tJ], 

the restricted Rees ring of R, with respect to J, and F(R,, J), the form ring of R, with 

respect to J, inherit several nice properties from R when bl, . . . , b, is a regular sequence. 

(The reader should note that each statement in Corollary 3.3 holds when bl, . . . , b, are 
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indeterminates (see [ 1, Ch. 93). Moreover, though Corollary 3.3 is clearly related to 

[l, Propositions 3.1 l-3.131, it does not seem to follow immediately from them.) 

3.3. Corollary. Assume that R is a Noetherian ring and I = (bl,. . . , b,)R is an ideal 
in R such that grade(Z) = g 1 2. Then the following hold 

(3.3.1) Zf R is Cohen-Macaulay (resp., an integral domain, a Cohen-Macaulay 
integral domain and I is a normal ideal (that is, I” is integrally closed for all positive 

integers n)), then F(R,, J) = F(R,, K) is Cohen-Macaulay (resp., an integral domain, 
an integrally closed Cohen-Macaulay integral domain). 

(3.3.2) If R is Cohen-Macaulay (resp., an integrally closed integral domain), 
then R,[tJ] = R,[tK] is Cohen-Macaulay (resp., an integrally closed integral 

domain). 

Proof. Since an ideal of grade g that is generated by g elements can be generated by a 

regular sequence, and since the form ring and Rees ring of an ideal are independent of 

the generating set, we may assume that bl, . . . , b, is an R -sequence. Then Theorem 3.2 

shows that J = K, so it suffices to prove the results concerning F(R,, J) (in (3.3.1)) 

and R,[tJ] (in (3.3.2)). 

For (3.3.1) assume that R is an integral domain. Then S is, so J = K is a prime 

ideal. Moreover, Jb, is generated by a regular sequence, so it follows that F(R,,J)i, 
is an integral domain, where & denotes the image of bl in F(R,,J). Also, the two 

claims in the proof of Theorem 3.2 show that & is regular in F(R,, J), so it follows 

that F(R,, J) is an integral domain. 

Next assume that R is Cohen-Macaulay. Then R,[{Wi,j}] is Cohen-Macaulay and 

the proof of Theorem 3.2 shows that F(R,,J) = R,[{Wi,j}]/Q, where Q is a perfect 

ideal and grade(Q) = (:). Therefore it follows that F(R,, J) is a Cohen-Macaulay 

ring (see [l, Proposition 16.191). 

Finally, assume that R is a Cohen-Macaulay integral domain and that I is a normal 

ideal. Then R,/J is integrally closed, (R,)J is a regular local ring, and F(R,,J) is a 

Cohen-Macaulay integral domain (by what has already been proved), so it remains to 

show that F(R,, J) is integrally closed. For this, by [5, Corollary 2.11, it suffices to show 

that l(J,) 2 max{dim(R,)J,dim(R,), - 2}, for all prime ideals q of R, that contain 

J. (Here, l(J,) denotes the analytic spread of J4. Note also that the assumption in 

[5, Corollary 2.11 that R be a homomorphic image of a regular ring is not required.) 

However, Z(J,) 5 2g - 2 for all such prime ideals q (as in the proof of [12, (2.1)]), 

and if bi # q for some i or if Xi @ q for some j, then l(J,) = g - 1. Therefore it 

follows that F(R,,J) is integrally closed. 

For (3.3.2), we may argue as in the proof of Theorem 3.2 that the kernel of the map 

presenting R,[tJ] is a perfect ideal of grade (i) - 1. It then follows from this as in the 

proof of (3.3.1), that R,[tJ] is Cohen-Macaulay whenever R is Cohen-Macaulay. If R 
is an integral domain, then J = K is a prime ideal, so J” = K” is K-primary for all 

n 2 1, by Theorem 3.2. Therefore J K = KK is a normal ideal, so J is a normal ideal. 

Since R is also integrally closed, R,[tJ] is integrally closed. 0 
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4. Asymptotic sequences and Ker(R, + R[tZ]) 

The main result in this section, Theorem 4.3, extends Rees’ theorem concerning K 
and J to arbitrary asymptotic sequences (of length g 2 2) in arbitrary Noetherian rings. 

To prove Theorem 4.3 we need the following definitions and preliminary result (which 

is of some interest in itself). 

4.1. Definition. Let I be an ideal in a Noetherian ring R. 

(4.1.1)2*(I) = {P E Spec(R); P is a prime divisor of (I”), for all large n (equiv- 

alently, by [R3, (2.4)], for some n 2 1)) is the set of asymptotic prime divisors of 

I. Here (Z”X is the integral closure in R of I”. (Thereforea* = B of (2.3.2).) 

(4.1.2) An element b in R is asymptotically prime to I in case (I, b)R # R and 

(l”)a : bR = (Z’), for all n 2 1. Elements bl, . .., b, in R are an asymptotic sequence 

in R in case bi is asymptotically prime to (bl,. . . , bi_l)R for i = 1,. . . ,g. (In particular, 

since (0), = Rad(R), it follows that bl is not in any minimal prime ideal in R.) 

Concerning (4.1.2) it is shown in [6, Lemma 5.131 that a regular sequence is an 

asymptotic sequence, so the results in this section hold when bl, . . . , b, is a regular 

sequence in a Noetherian ring R. 
The following result shows a useful new property of asymptotic sequences (namely, 

they become a regular sequence in many complete local domains that are closely related 

to the original ring). (It follows quite directly from the Cohen structure theorems that 

if C is a coefficient subring of a complete local domain L and xi,. . . ,x, is a system 

of parameters in L, then D = C[[xi, . . . , x,]] is a complete local subdomain of L, L is 

a finite D -module, D is a complete intersection, and xi,. . . ,x, is a regular sequence 

in D.) 

4.2. Proposition. Let bl, . . , b, be an asymptotic sequence in a Noetherian ring R, 
let P be a prime ideal in R that contains bl,. . . , be, let Q = Rp, let z be a minimal 
prime ideal in the completion Q* of Q, let L = Q*/z, let C be a coefJicient subring 
of L, andfor i = I,..., g let xi be the image of bi in L. Then altitude(L) = m 2 g 
and there exist x,+1,. . . ,x,,, in L such that: 

(4.2.1) C[[xl,.. ., x,,,]] is a complete local subdomain of L. 

(4.2.2) L is a finite C[[xl,. . . ,x,]]-module. 
(4.2.3) C[[xl,.. ., x~]] is a complete intersection. 

(4.2.4) xl,. . . ,x, is a regular sequence in C[[xl,. . . ,xJ]. 

Proof. It is shown in [6, Remark (b), p. 321 that the images in Q of bl,. . . , b, form an 

asymptotic sequence, so they form an asymptotic sequence in Q*, by [6, Lemma 5.11, 

so their images xi,. . . ,xg form a subset of a system of parameters in L = Q*/z, by 

[6, Lemmas 5.1 and 5.21. Therefore by extending xi,. . . ,xg to a system of parame- 

ters xi , . . . ,xg,xg+l,. . ,x,,, of L the conclusions follow immediately from the comment 

preceding this proposition. 0 
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The next result, which is an asymptotic sequence version of Theorem 3.2, extends 

the main result in [12] by showing that the conclusion holds for an arbitrary asymp- 

totic sequence (of length g 2 2) in an arbitrary Noetherian ring. As mentioned in the 

introduction, Rees proved the theorem for asymptotic sequences in a quasi-unmixed 

local ring in [12, (2.1)], but since Theorem 3.2 did not require that R be Cohen- 

Macaulay, an asymptotic sequence version should not require that R be quasi-unmixed 

(since, in the correspondence between the asymptotic and standard theories of ideals, 

quasi-unmixed is the analog of Cohen-Macaulay), and, in fact, Theorem 4.3 veri- 

fies this. (Rees’ proof in [12] is essentially self-contained (and is quite pretty). In 

contrast, the proof given below uses (2.3.2), (2.3.3), Theorem 3.2, and Proposition 

4.2, and several results on asymptotic sequences that have previously appeared in the 

literature. ) 

4.3. Theorem. Let b I,, . ., b, (g > 2) be an asymptotic sequence in a Noetherian ring 
R and let R,, K, J, and S be as in Notation 2.1. Then: 

(4.3.1) J, = K, = Rad(K), so (J”)a = (K”), for all n 2 1. 

(4.3.2) For all n 2 1, Ass(R,/(J”),) = Ass(R,/K,) is the set of minimal prime 
divisors of K. 

Proof. Assume it is known that: (*) I $ P n R for all P E A*(J). Then the conclu- 

sions follow immediately from (2.3.3) and (2.3.2). Therefore, it remains to show that 

(*) holds. 

For this, suppose, on the contrary, that there exists P E A*(J) such that I s P r‘l R. 

Let p = P fl R and let Q = R,. Then PQ, E A*(JQg) by [6, Remark, p. 151 (since 

Q, is a localization of R,), and ZQ C PQ, n Q. Let Q* be the completion of Q. 

Then (Q*), is a faithfully flat extension ring of Q,, so by [ 11, (6.5)] there exists P* 
E A *(J(Q* ),) such that P’ n Q, = PQs, so IQ* & P’ n Q*. Therefore there exists 

a minimal prime ideal z contained in P* such that, with L = Q*/(z n Q*), P*/z E 
A*(JL,) by [6, Proposition 3.181, and IL & (P*/z) n L. Finally, the images bk’, . . . , b,’ 
in L of b 1,. . . , b, are a subset of a system of parameters (by [6, Remark, p. 15, 

and Lemmas 5.1 and 5.2]), so let altitude(L) = g + e and let be+l’, . . . , bg+e’ in L 
such that bl’, . . . , b4+e’ ’ is a system of parameters in L, let C be a coefficient subring 

of L, and let D = C[[bl’ , . . . , bs+e’]]. Then N = (P*/z) “De E A*(JDg) by [6, Propo- 

sition 3.221 (since it follows from (4.2.3) that L, is a finite integral extension domain 

of D9), and (bl’, , . , b,‘)D & N n D. However, bl’, . . . , be’ is a regular sequence in D, 
by (4.2.4), so Theorem 3.2 shows that A^*(JD,) is a one point set whose one element 

contracts in D to zero (since S(D, (bl’, . . . ,be’)D) is an integral domain); hence we 

have a contradiction. Therefore (*) holds. 0 

It is well known that if bl,. . . , b, are contained in the Jacobson radical of R, then 

they form a regular sequence if and only if K C ZR, if and only if J = K. The- 
orem 4.4, which is a converse of Theorem 4.3, gives an asymptotic analog of this 

result. 
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4.4. Theorem. Let I = (bl,.. ., b,)R be an ideal of the principal class (g > 2) that 
is contained in the Jacobson radical of a Noetherian ring R and for each n > 1, let 

J(n) = ({bi”XI - bInXi; 1 5 i < j 5 g})R, and K(n) = Ker(R, + S(n)), where S(n) 
= R[tbl”, tb2*, . . . , tb,“]. Then the following are equivalent: 

(4.4.1) 61,. . . , b, is an asymptotic sequence in R. 
(4.42) K(n) C (I”)aRg for all n > 1. 

(4.4.3) (J(n)), = (K(n)), for all n 2 1. 

Proof. If (4.4.1) holds, then bl”, . . . , be” is an asymptotic sequence in R for all n 2 1, 

by [lo, (3.15)], so (4.4.1) + (4.4.3) by (4.3.1). And since J(n) C Z”R, for all n > 1, 

it follows that (J(n)), C (Z”R,), = (Z”),Rs, so (4.4.3) + (4.4.2). 
Finally, let R(n) = R[u, tbl”, . . ., tb,“], so R(n)/uR(n) = S(n)/Z[“]S(n) = F(n) where 

F(n) is the form ring of R with respect to Zl”l = (bl”, bzn,. . , b,“)R. Then it is 

shown in [9, (4.17)(1’) H (4’)] that (4.4.1) is equivalent to R(n)/(u,(m),)R(n) = 

R,/(Z”),R, for all n 2 1. Therefore, if (4.4.2) holds, then since (Z[“])n = (I”), it follows 

that R,I(Z”)& = S(n)l(Z”),S(n) = F(n)l((Z”),/Z[“])F(n) = R(n)l(u,(Z”),)R(n), 
so (4.4.2) =+ (4.4.1). q 

The final result is a corollary of Theorem 4.4, and it is an asymptotic sequence 

version of the following well known characterization of a Cohen-Macaulay local ring: 

The following are equivalent for a local ring R such that altitude(R) = n > 2: (a) R 

is Cohen-Macaulay. (b) There exists a system of parameters bl, . . . , b, in R such that 

Ker(R, + R[tbl,. . . , tb,,]) 2 (bl,. . . , b,)R,. (c) For every ideal Z = (bl,. . . , b,)R of the 

principal class g > 2 it holds that Ker(R, --+ R[tbl,. . . , tb,]) c ZR,. 

4.5. Corollary. The following are equivalent for a local ring R such that altitude(R) = 
n 2 2: 

(4.5.1) R is quasi-unmixed. 

(4.52) There exists a system of parameters bl,. . . , b, in R such that Ker(R, + 
R[tb,“‘,..., tbnml) C ((h”,... ,b,“)R),)R, for all m 2 1. 

(4.5.3) For every ideal I = (bl,. . . , b,)R of the principal class g > 2 it holds that 

Ker(R, + R[tb,, . . . , tb,]) & IaRg, 

Proof. (4.5.1) + (4.5.3) by (4.4.1) =S (4.4.2) (since ideals of the principal class in a 

quasi-unmixed local ring are generated by an asymptotic sequence, by [6, Lemma 5.3]), 

it is clear that (4.5.3) + (4.5.2), and (4.5.2) + (4.5.1) by (4.4.2) + (4.4.1) (since a 

local ring with an open ideal generated by an asymptotic sequence is quasi-unmixed, 

by [6, Corollary 5.91). 0 
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